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The productiveness of mistakes: on the 
value of failure in serious gaming 
Abstract 
This study presents a logistic model of knowledge growth to investigate the differences between 

performance and learning in serious games. In contrast with common performance assessment 

approaches the model takes into account the learning from failures. Monte-Carlo simulations of the 

model show that performance metrics systematically overestimate the player’s actual learning at 

early stages in a game and underestimate these at the end. Three evaluation metrics describing the 

progression, efficacy and efficiency of learning show how these differences depend on the players’ 

knowledge growth capacities and their success rates in the game. Results from the model when 

applied to a real serious game are consistent with those from Monte-Carlo simulations. The 

significance of the study goes beyond the particular details of this study in that it extends and 

complements the field of educational research with novel computational models and modelling 

methodologies. 
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1. Introduction 
Games have widely demonstrated their potential for learning, training and other serious purposes. A 

large number of empirical studies have shown significant benefits of game-based approaches over 

non-gaming alternatives (Clark, Tanner-Smith, and Killingsworth, 2015; Boyle et al., 2016). These so-

called “serious games” (Abt, 1970) have gained considerable popularity among scholars and 

teachers, because of their dynamic, responsive and visualised nature, capable of promoting  high 

motivations, strong user involvement and penetrating learning experiences (Westera, 2015). A player 

in a game doesn’t simply digest informational clues but essentially becomes an influential actor in 

the course of events, which establishes active learning along with high engagement and a sense of 

control, empowerment and ownership. The powerful experiences that game can provide are 

considered the main source of learning. Already in the early 20th century John Dewey (1938) 

developed his experiential learning theory recognising the importance of powerful experiences for 

learning, stating that learning should be connected with some meaningful, real world context in 

order to allow the learner to relate symbolic content (e.g., concepts and principles) to real-world 

referents. Learning from experience refers to learning by active exploration and self-direction rather 

than learning from direct instruction. Many related ideas and concepts have been used ever since  to 



 

 

indicate comparable approaches, such as discovery learning (Bruner, 1961), problem-based learning 

(Barrows and Tamblyn, 1980), inquiry learning (Papert,1980), experiential learning (Kolb, 1984), 

constructivism (Jonassen, 1991), situated learning (Lave and Wenger, 1991) and learning by doing 

(Schank, 1995; Aldrich 2005), respectively. All these models put the learner at the centre of the 

action and emphasise discovery,  exercise,  inquiry,  problem  solving,  and  authentic  contextual  

knowledge,  which activate  learners  and  help  them  to  acquire  the  tacit  knowledge [Polanyi, 

1966] that  is  intrinsically  bound  to  the actions  performed.  Learning from experience is the 

predominant pedagogical paradigm for game-based learning: players  in  a  game  engage in a 

problem context, they are  in  charge  of  addressing  the  challenges posed  and  learn  from  the 

responses they obtain from the game world. 

As a consequence of the action-oriented nature of games, the player’s progression in a game is 

directly linked with performance: new problems and new levels will open up only when the present 

ones have been completed successfully. Accordingly, game scoring systems tend to be based on 

appropriate performance, which refers to doing the right actions and doing them in the right way. 

However, various studies have challenged the learning-by-doing argument (Kirschner, Sweller, and 

Clark, 2006; Mayer, 2004). Just doing things does not necessarily lead to deep cognitive processing 

and the associated insights and understandings. Consequently, the inherent dynamic nature of 

games may induce players to act rather than think. Studies into computer-assisted instruction and 

simulations have shown that learners often adopt a trial-and-error strategy, which involves a lot of 

doing, but lacks any thoughtful considerations (Vargas, 1986). In many games this gets even worse 

when time-constraints come into play. Essentially, performance in a game is not necessarily a good 

indicator for learning progress. Various authors (VandeWalle, Brown, Cron, and Slocum, 1999; Fisher 

and Ford, 1998) have pointed out the difference between performance and learning. Good 

performance is commonly linked with reaching milestones, the swift completion of tasks, meeting 

execution standards, avoiding mistakes, and reducing risks. In many respects, however, effective 

learning requires opposite conditions, such as having sufficient opportunities for reflection, revision, 

exploration, self-evaluation, and notably being prepared to make mistakes (Westera, 2015). Hence, 

the performance orientation of games may  readily conflict with the objective of learning. Game 

score systems, mostly being performance-based, tend to neglect the productiveness of mistakes for 

learning or, even worse, disqualify mistakes as a source of learning by assigning penalty points. 

This study investigates the fundamental differences between performance and learning in a game 

with a series of simulations. To this end it presents a computational model and explores how 

performance and learning are related in different conditions. The consequential inclusion of failure in 

assessment metrics will be investigated in detail. To study practical significance, the model is applied 

and evaluated with logged player data from a real game. In the next section, we first elaborate the 

theoretical background of the approach. 

2. Theoretical background 
2.1. Learning from errors and failure 

Many studies have reported the productiveness of errors and failure for learning (e.g. Mory, 2003; 

Mathan and Koedinger, 2005; Tjosvold, Yu and  Hui, 2004; Ivancic and Hesketh, 2000; Keith and 

Frese, 2008; Calhoun, Boone, Porter and Miller, 2014; Gardner, Abdelfattah, Wiersch, Ahmed, and 

Willis, 2015; Bridger and Mecklinger, 2014; Huelser and Metcalfe, 2012; Potts and Shanks, 2014; 

Radosavljević, 2015; Cattaneo and Boldrini, 2017). In a study on episodic memory Cyr and Anderson 

(2014) have demonstrated the positive effects of learning from mistakes in conceptual tasks as 

compared to retrieval tasks. They conclude that conceptual mistakes are remembered well and act as 



 

 

“stepping stones” for learning. An extensive study in nursing (Hegg Reime et al., 2016) showed that 

making mistakes during simulation-based team training  improves the quality of patient care once 

the students returned to clinical practice as it made the students more vigilant. Reflecting on the 

errors made is crucial. Weinzimmer and Esken (2017) demonstrate the positive effects of mistake 

tolerance on organisational learning and performance. Simm (2005) poses the rhetorical question 

whether or not the performance demonstrated by students who are academically-strong, carry out a 

project effectively without major mistakes, produce a good report, but have little scope for self-

critique, really outperform those students who are academically weak, initially struggle with the 

project resulting in poor ‘products’, but learn by their mistakes and produce a good self-critique.  

2.2. Negative effects of performance-based score systems  
Although games for learning are essentially protected spaces that allow for failure and mistakes, the 

included score systems are often performance-based, which stimulates learners to demonstrate high 

ability and to avoid poor performance. In such contexts failure becomes a threat to success and 

thereby it affects self-esteem, self-confidence, and motivation. The resulting self-defence reactions 

(Mory, 2003) may include discounting (Kelley, 1973), task avoidance, feigning boredom, and task-

irrelevant actions to bolster self-image (Dweck and Legget, 1988), and learned helplessness 

(Seligman, Maier, and Geer, 1968). Also, many games  include  designed mechanisms  for  inducing  

stress,  such  as  time  pressure  or  time-dependent scores, which are likely to promote hurried, 

shallow or incomplete processing. Risk avoidance draws players toward activities that they are good 

at already and make them stay away from new approaches to avoid penalty points. Performance and 

learning are conflicting concepts that often require opposite operational conditions and opposite 

attitudes. A high performance score does not necessarily indicate high learning gains. To support a 

learning orientation, serious games should lower the price of failure (Gee, 2003; Westera, 2019). 

Time constraints and penalty points should ideally be avoided, while allowing players to make 

mistakes, to spend sufficient time and effort, to try and retry, to reflect on attainments and to decide 

upon their own strategies (autonomy). To exploit the full potential of learning by doing, games need 

to take into account the conflicts between performance and learning and promote deep processing, 

reflection and the consolidation of experiences.  

2.3. Performance assessment in serious games 
Performance assessment in serious games is generally based on the player’s achievements. 

Whatever game mechanics or game scenarios are used, game play always involves active decision 

taking by the players, who are challenged to find solutions to posed problems. To decide upon the 

quality of performance the results or solutions can then be checked against some reference 

standard.  

In model-driven games, such as business simulations, player performance can be derived from the 

dependent variables of the model, for instance the realised business turnover, profit, deficits or 

customer satisfaction. Likewise, performance in a ballistic challenge (physics) may be expressed by 

using the distance from a full hit. If no parametric models are available, player performance need to 

be based on the compliancy with protocols and checklists. For instance, in a game about fire safety, 

player performance would be expressed as the degree of agreement with prescribed safety 

protocols. In a math game, performance could be simply expressed as the fraction of problems that 

were solved. Occasionally, time spent is included in the scoring system, which is disputable as such in 

the context of learning. In all cases, a quantitative score is defined, which is then compared with a 

reference to make a judgement. In its most simple form the judgement of a single game action is 

dichotomous: the result is either correct or incorrect, while numeric scores are assigned accordingly. 

Summation of the scores across all the game’s challenges, eventually using different weights, yields 



 

 

the player’s overall performance score. By its focus on completion and achievements, in-game 

performance assessment is essentially outcome-oriented, neglecting any process information or 

player history.  This focus on achievements, outcomes or results, is readily associated with “closures 

points”, which is a game design pattern that indicates the successful completion of a challenge, an 

episode, or a level (Björk and Holopaïnen, 2005). Hereby, performance assessment comes close to 

testing. Although it cannot be denied that testing may contribute to learning (the testing effect: 

Roediger and Karpicke, 2006), it may unnecessarily promote risk-avoiding behaviour as well as 

shallow and incomplete processing. Particularly in the rich and dynamic learning environments that 

games provide, learning from mistakes is a means too powerful to be neglected. To allow players to 

learn from mistakes, the history of failure should be taken into account. A failing performance may 

still contribute positively to the player’s mastery of knowledge, skill and competency. In current 

study, the consequential inclusion of failure in assessment metrics will be investigated in detail. 

3. Model Starting points 
3.1. A frugal representation of serious games 

Serious games are complex, interactive systems composed of many interrelated game objects and 

their frequently changing attributes, all of which contribute to a combinatorial explosion of potential 

game states. Even a simple game such as tic-tac-toe (noughts and crosses) has a state space up to 

39=19,683 different states (neglecting any symmetries) allowing for 9!=362,880 different trajectories 

through game state space. When accounting for symmetries and including games that end within 9 

moves only, the number of trajectories is still 26,830 (Schaeffer, 2002). Frugality with respect to the 

wide range of variables that are available for describing the processes and conditions of serious 

gaming is dictated to avoid overfitting of an envisioned model. Rather than describing games by their 

numerous game states, which would account for every detailed player interaction (e.g. mouse clicks, 

keyboard strokes), a game is considered to provide the players with a coherent set of challenges, 

e.g., tasks, assignments, missions, scenes or levels that need to be passed through {Westera, 2017 }. 

Thereby a game challenge is conceived as a higher level aggregate of micro-actions, that constitute a 

well-defined chunk of the game scenario, it has a well-delineated scope, and its successful 

completion goes with a clear result or achievement that is supposed to contribute to raised mastery 

of knowledge or skills. Hence, a game challenge describes a part of the game rather than the whole, 

very similar to a learning task or learning activity in a lesson. Given the set of game activities, a 

serious game is represented as a network of challenges. Playing a serious game can effectively be 

interpreted as following a trajectory through the network of specified challenges (rather than 

through all possible game states).  

3.2. Knowledge mastery versus performance 
Serious games are designed to support the mastery of well-specified knowledge, skills or 

competences. For practical reasons we will use the term knowledge as a transcending, inclusive 

concept indicating the things to be learned. In education and training knowledge requirements are 

specified as learning objectives, which serve as the formalised benchmark for assessment and 

certification (e.g. Anderson and Krathwohl, 2001; Bloom, Engelhart, Furst, Hill, and Krathwohl, 1956; 

Heller, Steiner, Hockemeyer, and Albert, 2006; Shute, and  Ventura, 2013). The learning objectives 

should not be confused with the specific goals that players are to pursue in the game (e.g. defeating 

enemies, collecting objects, or locating the treasure). Generally, learning objectives are represented 

as a hierarchical framework of interrelated knowledge elements, while child nodes in the hierarchy 

have a precedence relationship with their parent nodes. The learning objectives hierarchy is static by 

its nature of expressing the benchmark of required learning outcomes. In general, the relationship of 

game activities and learning objectives entails a many-to-many relationship: each game activity may 



 

 

address multiple learning objectives, while at the same time each learning objective may point to 

multiple activities. Observed player behaviours in the activity would provide evidence for the 

enhanced mastery of underlying knowledge, which is generally referred to as the evidence model 

(Mislevy, Steinberg, and Almond, 2003). Performance may well be covered by knowledge mastery, as 

it usually refers to the well-demonstrated mastery of certain skills or competencies. The confusion 

between knowledge mastery and performance arises from the fact that performance measurement 

is focusing on the correct execution of a task or often even the outcome only, while other dimensions 

of mastery (e.g. understanding, insight) are readily neglected. This inevitably translates into the 

performance-based scoring methods that are generally used in games. As a consequence, 

performance indicators do not fully capture the state of a player’s knowledge mastery. 

4. Model development 
4.1. The performance assessment model 

To award the player’s achievements, most serious games include a performance-based scoring 

system. The scores may be either manifestly communicated to the player or they are left concealed 

and only used to drive the evolution of the game. In its most simple form, a scoring model assigns 

bonus points to favourable actions. Sometimes, the systems also account for penalty points when 

mistakes are made. Overall performance is thus expressed as the accumulation of the bonus points 

assigned for successes, reduced with the penalty points assigned for failures. The assignment of 

scores is a discrete process that is activated only upon completion of a challenge. Consequently, 

performance curves are represented as discrete, stepwise functions, even though the processes of 

learning may be assumed to be fully continuous.   

Such performance score model can be expressed as follows. Let the game be represented as a set of 

well-designed game challenges labelled with a natural number i and let Si be a binary success 

indicator for the i-th challenge, with 

 𝑆𝑖 = 0 for a failure, and 𝑆𝑖 = 1  for a success. (1) 
 

Then the cumulative performance Pi after i challenges can be written as 

 𝑃𝑖 = ∑(𝑆𝑖 ∙ 𝑏𝑖 − (1 − 𝑆𝑖) ∙ 𝑝𝑖)

𝑖

 (2) 

with bi and pi the bonus and penalty assigned for challenge i, respectively.  

Figure 1 displays a randomly generated performance curve (dots) in accordance with such model and 

average curves (solid) after 500 iterations (bonus points bi=1, penalty points pi=0, success rate 

Si=0.6).  



 

 

 

Figure 1. A common player performance example based on a randomised sequence of 50 random 

successes or failures (staircase line), and the mean result of 500 iterations (thin solid line) and its 

variability range (dashed-dotted).  

The average performance is proportional with the number of challenges, while the standard 

deviation is typically 7%. Changing the bonuses, penalties or success rates preserves the overall linear 

pattern.  

A similar curve can be drawn to represent the performance score as a function of time. If Di denotes 

the duration of time required to complete the i-th challenge, then the timestamp for the completion 

of challenge i is given by: 

 𝑡𝑖 = ∑ 𝐷𝑖

𝑗≤𝑖

 

 

(3) 

When Di is constant (each challenge requiring the same amount of time), the overall linear shape of 

the performance curve is preserved. Indeed, in many games, the performance score of a player will 

grow more or less linearly with time spent. Likewise, time may be readily replaced with effort, which 

would yield a similar pattern, provided that the player preserves the same intensity of effort during 

the game.  

The linearity of these performance systems is problematic and highly unrealistic, because in practice 

it will become increasingly difficult to approach the level of perfection. To account for such 

asymptotic saturation effect we turn to an assessment model based on logistic growth.   



 

 

4.2. The logistic assessment model for knowledge mastery 
In many respects, the process of individual learning is all about change, growth and development. 

Therefore, the interplay of the individual learner and a serious game can be considered a dynamic 

system, which internal structure and state continually change over time. The process of learning 

displays many similarities with system dynamics, which generally describes growth as a function of 

restricted available resources. The dynamic systems approach incorporates complex feedback 

mechanisms which are essentially nonlinear in nature. Systems dynamics is able to account for 

chaotic behaviours, instabilities, strange attractors, phase transitions and other phenomena that are 

associated with complexity. The complexity of learning and instruction processes certainly argues in 

favour of such exploration of nonlinearities, as it may yield insights in the conditions for optimum 

knowledge growth to occur. Both internal and external variables put limitations to the growth of 

knowledge, which suggests that the learning of an individual readily qualifies as a system’s 

constrained growth process. In particular, logistic functions could be used to cover the constrained 

growth process of learning.  

The starting point for the logistic growth of the player’s knowledge mastery is the following recurrent 

difference equation, expressed as a function of time t: 

 𝑀𝑡+∆𝑡 − 𝑀𝑡 = 𝑔 ∙ 𝑀𝑡 ∙ (𝑀𝑚𝑎𝑥 − 𝑀𝑡) ∙ ∆𝑡 (4) 
where 

t is time 

t is the increment of time  

Mt is the knowledge mastery level at time t   

Mmax is the level of ultimate perfection, and   

g the unconstrained growth rate. 

The logistic model complies with the proverb that “every beginning is hard”, because initial growth of 

knowledge mastery is proportional to the actual mastery level Mt: low mastery would lead to small 

growth, whereas high mastery means large growth. But the growth of mastery is also proportional to 

the remaining knowledge mastery gap (Mmax-Mt), which accounts for the concept of “full mastery” or 

“perfection” (Mmax) and the phenomenon that striving for perfection becomes increasingly hard 

when one approaches this ultimate level.  

Again, it is assumed that the learning environment is composed of a set of separate challenges. Given 

the duration Di of the i-th challenge (cf. equation(3)), the time interval associated with the challenge 

is given by 

 ∑ 𝐷𝑖 < 𝑡 ≤

𝑗≤𝑖−1

∑ 𝐷𝑖

𝑗≤𝑖

 

 

(5) 

The main starting point is that the engagement of a player in a game challenge inherently leads to 

enhanced mastery, be it that the growth rate g may be different for successes and failures. To this 

end, we use Si as the binary success indicator for the i-th challenge, as introduced in equation(1). Let 

α be the unconstrained growth rate in case of success and β the unconstrained growth rate in case of 

failure, then the growth rate g in equation (2) can be rewritten as gi 

 𝑔𝑖 = 𝛼 ∙ 𝑆𝑖 + 𝛽 ∙ (1 − 𝑆𝑖) (6) 
 



 

 

Although gi is constant during the challenge it may vary between different challenges (either equal to 

α or β), making it time dependent.  

Equation(4) representing the knowledge mastery growth model can now be rewritten as 

 𝑀𝑡+1 − 𝑀𝑡 = (𝛼 ∙ 𝑆𝑖 + 𝛽 ∙ (1 − 𝑆𝑖)) ∙ 𝑀𝑡 ∙ (𝑀𝑚𝑎𝑥 − 𝑀𝑡) ∙ ∆𝑡 (7) 
 

This difference equation generally can be solved analytically, be it constrained to each interval (fixed 

growth rate). Also, solutions can be generated through Monte-Carlo simulations, which will be 

presented in the next sections. The resulting mastery curves will be demonstrated to comply with the 

general S-shape of constrained growth given by the logistic principles: starting from a certain prior 

knowledge level, the knowledge mastery first growths exponentially, but gradually tends to saturate 

and asymptotically approach the level of perfection, as it becomes increasingly hard to improve any 

further. 

5. Model exploration 
5.1. Technical implementation 

To allow for Monte-Carlo Simulations for investigating knowledge growth behaviours described by 

equation(7) under various conditions, the model was technically implemented in a series of Scilab 

programmes (www.scilab.org), while using its math functions and graphics libraries. 

5.2. Baseline parameters 
After preliminary exploration and testing the following parameters were set to define a baseline 

model with realistic growth (Table 1): 

Table 1. Baseline model parameters and explanations. 

Parameter Value Explanation  
 

Initial knowledge mastery level M1 
 

0.01 This is an arbitrary low prior knowledge mastery 
level. This value does not fundamentally influence 
the shape of the resulting growth curves. 

Success growth rate α 
 

0.005 A growth rate as small as this requires a substantial 
number of iterations to approach high mastery  

Failure growth rate β 
 

0.001 The failure growth rate was chosen to be 
considerably lower that the success growth rate. 

Challenge success rate S 0.60 The odds of successes are 6 to 4. 

Time increment t 1 Time is no more than a scaling factor. Each time 
step covers the completion of one game challenge 
out of an unlimited pool of challenges.  

Challenge durations Di 50 Expressed as the number of time increments t 
Number of challenges n 50 Similar to the linear case (cf. Figure 1) 
Total number of time steps N 2500 This equal to Di times n 

 

5.3. Logistic learning curves  
Figure 2 displays a randomly generated growth curve and the average growth curve after 500 

iterations for the baseline case. It also shows the range of the standard deviations and the two 



 

 

extreme cases of all successes (upper dashed line) and all failures (lower dashed line).

 

Figure 2. An exemplary growth curve of the baseline logistic model (bold solid), the mean baseline 

growth curve (thin solid) after 500 runs, the variability range (dash-dotted lines), and full success 

curve and full failure curve, respectively (dashed lines). 

The mastery growth curve for a single run (bold solid line in figure 2) roughly follows the logistic 

pattern, while it is composed of different logistic curve fragments defined by either the growth rate 

for successes α or for failures β. 

5.4. Comparing linear and logistic assessments 
The different assessment models should be compared for the very same game session. The 

(arbitrary) performance scale is aligned with the logistic mastery scale by setting the final linear 

performance score Pn (after n challenges) and the attained (logistic) mastery level MN at the end of 

the game to coincide. By definition, the final mastery level is constrained to the normalised scale and 

any realistic level of mastery will inevitably be well below one (perfection). For a balanced 

comparison, three distinct assessment metrics should be evaluated: 1) the progression metric, and 2) 

the efficacy metric, and 3) the efficiency metric, respectively, all expressed as a normalised scalar. 

5.4.1. The progression ratio 
The progression ratio for logistic mastery as a function of time t is defined as 

𝑅𝑀𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛,𝑡 =
𝑀𝑡

𝑀𝑁
     (7) 

which indicates the player’s progression at each step i toward the final (target) mastery level. 

Likewise, the progression ratio for the linear performance at challenge i is written as 



 

 

𝑅𝑃𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛,𝑖 =
𝑃𝑖

𝑃𝑛
     (8) 

Figure 3 shows the progression ratios for logistic mastery and linear performance, respectively, as a 

function of time. 

 

Figure 3. Progression ratios with respect to the final achievement level for logistic mastery (fluent 

curve) and linear performance (staircase line), respectively, based on 500 simulated game runs for 

the baseline case (cf. Table 1).  

A low value of the progression ratio signals that the player still has a long way to go. The staged 

performance curve reflects the discrete nature of assigning scores only after completion of each 

challenge.  The figure shows that linear performance initially tends to overrate the player’s 

achievements, which is then compensated for during the final stages of the game, when levels of 

substantial mastery are reached. The progression ratios only reflect the distance to the final level, 

but do not necessarily reflect the quality of work so far. Hence an additional metric is needed to 

cover this. 

5.4.2. The efficacy ratio 
The quality of achievement so far is expressed by the efficacy ratio, which is defined as follows for 

the mastery model 

RM𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦,𝑡 = M𝑡/M𝑚𝑎𝑥,𝑡     (9) 

The progression ratio relates the player’s achievements at time t to the best possible achievement 

level that the player could have reached at time t, rather than to the final target level MN. It is the fair 

ratio of the actual achievement Mt and the optimum achievement Mmax,t with Mmax being the curve of 



 

 

successes only. The analogous formula for the linear performance efficacy ratio after challenge i 

reads 

    RP𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦,𝑖 = P𝑖/P𝑚𝑎𝑥,𝑖     (10) 

where Pmax,i is the curve of maximal performance (all successes). Figure 4 shows the efficacies for 

both models.  

 

Figure 4. Efficacy ratios for logistic mastery (fluent line) and linear performance (staircase line), 

respectively, based on 500 simulated game runs of the baseline case (cf. Table 1).  

While the efficacy for the linear model gravitates around a stable level (given by the challenge 

success rate S=0.60), the logistic model show a profound dependency on time. This is the direct 

consequence of the exponential growth occurring at low mastery levels: every early failure 

disproportionally reduces the cumulative growth as compared to the optimal achievement. In the 

course of time, however, when the optimal achievement curve starts to saturate, the arrears are 

being overtaken. This metric is thus informative about the quality of work so far as compared to what 

could have been achieved at this stage. It does not tell anything about the remaining distance to the 

final level MN, which is covered by the progression ratio as explained before. 

5.4.3. The efficiency ratio 
The efficiency of achievements is given by the time spent so far compared to the minimum time (or 

number of steps imin) required for having successes only, which can be expressed as follows: 

RM𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦,𝑖 =
𝑡𝑚𝑖𝑛

𝑡
= M𝑚𝑎𝑥,𝑡

−1 (𝑀𝑡)/𝑡     (11) 



 

 

and similarly for linear performance after challenge i 

RP𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦,𝑖 =
𝑖𝑚𝑖𝑛

𝑖
= P𝑚𝑎𝑥,𝑖

−1 (𝑃𝑖)/𝑖     (12) 

Figure 5 shows the two efficiency ratios.  

 

Figure 5. Efficiency ratios for logistic mastery (fluent curve) and linear performance (sawtooth), 

respectively, based on 500 simulated game runs for the baseline case (cf. Table 1).  

The efficiency ratio of the average performance repetitively touches on the success rate level 

(S=0.60), but decreases hyperbolically during the dead times of challenge execution, since 

performance scores are assigned only after completion of the challenge. The nonlinear skew of the 

logistic model causes the efficiency ratio to strongly deviate from the efficacy ratio (cf. Figure 4). The 

efficiency ratio of the logistic model tends to be systematically higher than the ratio for the linear 

mode, which can be explained by the average growth factor (cf. equation (6)), which predicts a final 

efficiency level for the baseline case of 0.68. Overall, the linear model systematically underestimates 

the player’s efficiency. 

5.5. Influence of growth rates α, β and success rate S 
As the effective growth rate of the logistic model is given by equation(6), both α, β en S affect the 

shape of the resulting growth curves.  When β approaches α, which means that learning from 

mistakes approaches the learning from successes, the logistic growth will be faster (cf. equation(6)), 

whereby the logistic progression ratio (cf. figure 3) will start to exceed the performance progression 

ratio at an earlier stage. The opposite happens when β gets smaller. For the logistic efficacy ratio the 

same holds: when β approaches α, the efficacy goes up, which leads to a radically less pronounced 



 

 

dip in the curve (cf. figure 4). Likewise, the logistic efficiency ratio goes up, while the linear 

performance efficiency ratio remains unaffected.  

Similarly, a raised success rate S leads to higher growth rates, procuring the same effects, be it, 

however, that now the performance efficacy ratios and efficiency ratios no longer remain the 

unaffected, but increase as well. The linear progression ratio remains unaffected as a result of the 

enforced calibration of final performance to the final mastery level.  Overall, the exploration with 

different values for α, β en S show consistent outcomes that entail either less-pronounced or more-

pronounced differences between logistic curves and linear performance curves. We wish to 

emphasise that we have only described here tendencies of behaviours that are averaged over a large 

number of simulated game runs. Individual play sessions could deviate considerably from the 

average behaviours (cf. the edgy curve in figure 2).  

6. Case study: the Playground Game 
To further explore the model’s behaviours  with real-world data, log file data obtained from the 

Playground game were used (Westera, Slootmaker, and Kurvers , 2014). The Playground game deals 

with statistics, a domain infamous among university students because of its inherent complexity 

(Beurze, Donders, Zielhuis, Vegt, and Verbeek, 2013; Griffith, Adams, Gu, Hart, and Nichols-Whitehead, 

2012). The game offers students a situated problem to get acquainted with statistical concepts and 

their practical significance. The player’s task in the game is to decide upon the most suitable location 

for laying out a children’s playground in a fictitious town, while taking into account a variety of factors 

and data. The starting point of the game is a research report written by a “consultant”. This report, 

however, contains deliberate flaws and fallacies, some of which are manifest and some of which are 

obscured or subtle. The player’s task is to judge the correctness of the approach and the validity of the 

outcomes by interrogating the consultant who is the author of the report and a contra-expert who 

criticises the report - both represented in interactive videos. The game is structured along eight 

problem areas surfacing in the consultant’s report, which the players can address in arbitrary order. 

For each problem area a set of challenges is offered, each requiring well-considered decision taking. 

The game’s score system assigns bonus points for each correct decision. The Playground Game is a 

web-based game, a demo-version of which (in Dutch) is available at http://goo.gl/mwH9YL. 

6.1. Data collection and processing 
The game was administered to psychology students from the bachelor programme of Leuven 

University. It was combined with a post-questionnaire composed of 28 items concerning the players’ 

appreciations, judgements about the game, but importantly also including 1) a self-assessment, 2) a 

set of questions about familiarity with statistical concepts, and 3) a set of five methodological test 

questions, which were combined into an aggregated metric reflecting the post-game mastery level. 

Out of 125 subscriptions, 117 participants completed the game and questionnaire. The anonymised 

log files of students were filtered to identify the key events, in particular, the timestamps of each game 

challenge and the awarded scores. This way, the game data represented a chain of subsequent 

challenges and the associated successes and failures, which is in agreement with the frugal model. 

The session times were typically 1 hour (standard deviation 53 minutes), showing large variability at 

the high end. Performances were based on the scoring model (assigning 1 point for a success) and  

rescaling these by enforcing the final performance to equal the post-game test outcome. Model 

computations were carried out with time steps t of 1 second, the initial mastery level set to 0.01 and 

the ratio of failure growth rate and success rate β/α set to 0.2 (in accordance with the baseline model). 

Equating the final mastery level that a student attained with the test metric from the questionnaire 

allowed to estimate the growth rates α and β for each student. This was done by first estimating seed 

http://goo.gl/mwH9YL


 

 

values of α and β from the alignment of an analytical solution with the test score, and then 

subsequently refining the numerical solution with a difference reduction metric (tolerance < 1%). 

6.2. Case results  
For each participant the log file data were used to calculate the performance curve and the 

knowledge mastery curve. Figure 6 shows both curves as a function of time, averaged over the 

population. Although the resulting curves seem to confirm the general pattern obtained from the 

simulations that the performance scores most of the time exceed the mastery scores (cf. figure 3), 

the curves are deceptive because they do not take into account the different session times of 

participants: at each point in time different players will be at different stages in the game. 

Consequently, it means that that pool of participants gradually decreases with time because of more 

and more players will have completed and exited their session. The time axis in figure 6 is cut off at 

5733 seconds, the ultimate point in time that a minimum of 16 players is preserved in the game.  

 
Figure 6. Average performance (bold solid line) and knowledge mastery (thin line) for the Playground 

game participants as a function of time. 

 

To allow a more appropriate comparison across the pool of participants the different time scales 

were rescaled to match a fix standard covering each participant’s full session. Figure 7 shows the 

average performance curve and knowledge mastery curve mapped onto a reference scale of 10,000 

units: it represents the average patterns of progression toward completion of the game, irrespective 

of true time.  



 

 

 
Figure 7. Average performance (bold solid line) and knowledge mastery (thin solid line) of the 

Playground population aligned to a reference time scale of 10,000 units. 

 

These harmonised curves show quite good agreement with the pattern displayed in figure 3: 

performance levels tend to exceed the mastery levels for the larger part from the start, which is then 

compensated for toward the end. A slight deviation from the simulation-based pattern may be 

observed in the increasing rather than constant slope of the performance curve, which suggests that 

the time to successfully complete a challenge gets shorter toward the end of the game. This might be 

explained by the players becoming more knowledgeable about the game’s content during the session, 

which procures faster achievement of successes. Such a mechanism is not assumed in the proposed 

computational model, but may be easily added if challenge complexity data were available. 

 

The average growth rate for successes (α) was found to be 0.0028 per second with a large standard 

deviation of 0.0013 s-1. Given the pre-set value of α/β=0.2, the corresponding rate for failures is 0.0014 

s-1 (standard deviation 0.0007 s-1). Logarithms of the individual growth rate α and game session times 

showed substantial, significant correlation (Spearman’s ρ=-0.88). This is consistent with the fact the 

session time was used for deriving an estimated seed value for α. From linear regression the following 

hyperbolic relationship was derived, using α as a predictor for session time T in this game: 

 
𝑇 =

8.67

𝛼
 

 

(13) 

 



 

 

Further correlations were found between players’ average challenge duration and session time 

(ρ=0.79, slope=56.2, intercept=616 (s)), between average challenge duration and growth factor α 

(log-log ρ=-0.66, log slope=-0.66 (s-2), log intercept=-3.44 (s-1)) and, be it less pronounced, between 

the fraction of time spent to successes and growth factor α (ρ =-0.48, slope=-0.0035 (s-2), 

intercept=0.0047 (s-1)). 

7. Discussion and conclusion 
Model exploration has demonstrated that the differences between common performance metrics 

and logistic models of knowledge mastery are substantial. Linear performance metrics, which are 

used in many serious games, tend to overestimate the player’s logistic knowledge mastery at early 

stages and underestimate it at the end. Although the study was inspired by the idea of learning from 

mistakes, the differences remain when this factor is excluded (β=0), be it less pronounced. Evaluation 

of three assessment metrics describing progression, efficacy and efficiency, respectively, revealed 

structural differences between linear performance and logistic mastery. Empirical testing with real-

world game data showed results that are largely consistent with the results from Monte-Carlo 

simulation. Various correlations were identified, most notably the hyperbolic relationship between 

session time and growth rate α. Since the latter may be regarded as a stable personal characteristic 

(within a given domain), it may act as a personal predictor of session time (speed).  

This study, which is positioned as an early exploration of the topic, is not without limitations. The 

presented model provides an unmistakably simplified representation of serious game environments. 

First, it treats knowledge as a single scalar, while in practice multidimensional competency constructs 

may be needed. If the superposition principle applies, however, this multidimensionality need not be 

a fundamental issue. Second, the model uses the dichotomy of successes and failures. It may need 

extension to more detailed scales. Third, the approach so far assumes that the game challenges are 

exchangeable and independent. In practise, game challenges may be of different complexity and they 

are likely to be conditionally dependent requiring a preferential sequence order possibly enforced by 

narrative. Although accounting for this would require considerable model extension, it would not be 

a principle problem. Fourth, the model assumes uninterrupted learning of stable intensity at every 

stage of the game by neglecting any periods of concentration flaws, persistent failure, mood 

changes, pauses, interruptions or any unproductive action such as navigation. Finally, the assumption 

that the processes of learning can be adequately described by a logistic growth model would need 

further investigation, including a well-controlled set-up that allows for frequent, monitoring of 

knowledge mastery.  

Overall, this investigation has revealed substantial differences between linear performance 

assessment and the logistic assessment of knowledge mastery. Linear performance models may be 

well suited to assess correctness and fluency of task execution and the associated operational skills, 

but partially neglect the underlying factors of understanding, deep processing and reasoning. The 

ideal student completing the game quickly without errors may have learned less than the slow, 

cautious and reflective learner that frequently fails but sturdy reconsiders and gradually recovers. 

Linear performance metrics are simply based on milestones, but disregard the concept of growth. 

The logistic model fully embodies the concept of growth and thereby it possesses a more robust 

theoretical grounding, which goes beyond the pragmatics of performance assessment. The relevance 

of the work goes beyond the particular results of this study in that it extends and complements the 

field of educational research with new computational modelling methodologies, which have proven 

highly successful in various other domains by recreating observed phenomena and manipulating 

these by varying contextual parameters and constraints (De Marchi, 2005). Computational modelling 

methodologies are likely to positively contribute to enhanced learning theory formation and testing, 



 

 

enhancing the explanatory and predictive power of educational research, and to anticipating the 

ever growing opportunities for data driven research methodologies in the digital era. 
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